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Mixing is studied in open-flow channels with conformally mapped wavy-wall profiles,
using a point-vortex model in two-dimensional irrotational, incompressible mean flow.
Unsteady dynamics of the separation bubble induced by oscillatory motion of point
vortices located in the trough region produces chaotic mixing in the Lagrangian
sense. Significant mass exchange between passive tracer particles inside and outside
of the separation bubble forms an efficient mixing region which evolves in size as
the vortex moves in the unsteady potential flow. The dynamics closely resembles that
obtained by previous authors from numerical solutions of the unsteady Navier–Stokes
equations for oscillatory unidirectional flow in a wavy channel. Of the wavy channels
considered, the skew-symmetric form is most efficient at promoting passive mixing.
Diffusion via gridless random walks increases lateral particle dispersion significantly
at the expense of longitudinal particle dispersion due to the opposing effect of mass
exchange at the front and rear of the particle ensemble. Active mixing in the wavy
channel reveals that the fractal nature of the unstable manifold plays a crucial role
in singular enhancement of productivity. Hyperbolic dynamics dominate over non-
hyperbolicity which is restricted to the vortex core region. The model is simple yet
qualitatively accurate, making it a potential candidate for the study of a wide range
of vortex-induced transport and mixing problems.

1. Introduction
The phenomenon of Lagrangian chaos has been a subject of great interest following

the landmark demonstration by Aref (1984) of chaotic particle motion beyond that
of the underlying fluid dynamics. Using what is now known as the blinking-vortex
model, Aref (1984) reported complex particle motion induced by the time-periodic
agitation of a pair of point vortices in an idealized two-dimensional closed fluid system.
The enhancement of mixing in relatively simple Eulerian unsteady flows has since
been extensively researched. Chaotic motion, or chaos in general, is characterized
by sensitivity to initial conditions, aperiodic motion with rapid divergence and
unpredictability despite being deterministic. Ottino (1989) gave a detailed account
of mixing and chaos and described the many analytical tools developed in the field
of nonlinear dynamics, which underwent rapid progress in the 1980s.

The transport and mixing problem in a wavy channel can be characterized by a relat-
ively simple flow field but intrinsically complex chaotic particle motions due to vortical
stirring. Hence, unless the flow is fully turbulent, a point-vortex model involving few
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degrees of freedom can be a particularly attractive way to give a simple and concise
description of the flow field which is dominated by vortex-induced circulation.

Rom-Kedar, Leonard & Wiggins (1990) examined transport and mixing in a two-
dimensional inviscid incompressible flow governed by an oscillating vortex pair. They
studied the global topology of chaotic particle motions for small perturbations of an
external strain-rate field that caused the vortex pair to oscillate about its equilibrium
position. For the perturbed flow, the invariant stable and unstable manifolds, defined
as the sets of all phase space points from which particles can reach the hyperbolic
fixed point in forward and reversed time respectively (Tél & Gruiz 2006), are shown
to intersect each other transversely, resulting in tangled flow structures which are
responsible for fluid transport in the mixing region. The dynamics of the unsteady
vortical flow reported by Rom-Kedar et al. (1990) approximates the study of flows
in furrowed channels with wavy-wall profiles and time-periodic volumetric flow rates
considered by Sobey (1980). The flow field in the vicinity of the oscillating vortex
pair corresponds to the instant when the vortex formed from flow separation is
ejected into the main stream, with recirculating flow between the vortex and the
wall. It is thus limited to the case in which the oscillating vortex pair is sufficiently
distant from the wall. In the present work, we extend the above study to consider
the effects when the vortices move in relatively large orbits such that they interact
with the wall via image vortices. We consider mixing of an inviscid flow in furrowed
open-flow devices characterized by a wavy-wall profile previously described by Taylor
(1981). The flow field comprises a uniform mean flow and self-sustaining point
vortices in the furrows. Strong mixing cases are considered where the circulations
induced by the point vortices dominate over other processes such as boundary effects
at the wall. Our primary interest is to investigate the particle convection. Using a
simple approximation, both the vortices and particles are assumed to take on the
velocity of the resulting flow field and are tracked using a Lagrangian technique.
Since the study involves only kinematical considerations, the model is independent
of Reynolds number but should apply to a real laminar flow subjected to external
stirring actions such as in the blinking-vortex experiments (Aref 1984). Analysis of
particle motion in such flows from a Lagrangian point of view is very similar to that
of flow visualization techniques. We show that our point-vortex model reproduces
some of the salient features of mixing in a wavy channel similar to that obtained
from numerical solution of the Navier–Stokes equations (Sobey 1980). In addition,
several observations unique to the present model are presented and discussed.

We note that flow over wavy boundaries is a generic problem in fluid mechanics.
It is important in the generation and growth of waves in the open ocean, where
the rapid growth of short steep waves is largely due to flow separation at their
sharp crests (see e.g. Csanady 2001). It is also of direct relevance in the modelling
of ‘singing pipes’, where high-speed gas or liquid flow in corrugated pipes can
excite acoustic organ-pipe modes (e.g. Crawford 1974; Silverman & Cushman 1989;
Cadwell 1994; see also the discussions by Walker 2007, § 3.39). In each of these
problems, a simple point-vortex potential flow model could be useful for exploring
some of the important physical processes. In the present paper, we concentrate on
mixing induced by unsteady vortex motion. In contrast, for aero-acoustic problems
such as the singing pipe, the unsteady vortex motion itself is responsible for driving
and responding to the acoustic modes (Howe 2003).

Numerical simulation (Sobey 1980) and experimental observations (Stephanoff,
Sobey & Bellhouse 1980) of flows in furrowed channels have revealed that flow
separation occurs in the hollows at Reynolds numbers above a threshold value. For
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unsteady flow, deceleration of fluid in the diverging part of the channel leads to the
cyclic formation, growth, ejection and decay of vortices which enhance convective
mixing. This behaviour has allowed the design of devices capable of efficient mixing
and mass transfer in an open system in the absence of turbulence, such as membrane
oxygenators. Sobey (1982) made similar observations for flows in wavy channels with
asymmetric geometry. Sobey (1985) further studied the occurrence of Lagrangian
convective dispersion caused by unsteady separation during oscillatory flow through
a furrowed channel in the absence of Brownian diffusion and demonstrated that the
variance of fluid particles grows approximately linearly with time.

Using a numerical scheme similar to that of Sobey (1980), Ralph (1986) presented
results for viscous oscillatory flow in wavy-walled tubes with the aid of flow
visualization. At large Strouhal number, the flow structure is similar to that obtained
by Sobey (1980) at low Reynolds number but high enough that separation occurs.
Development of time-asymmetric flows in a limited region of the parameter space
may be regarded as a bifurcation of the flow structure and is suggestive of transition
to turbulence, analogous to a forced nonlinear oscillator from the viewpoint of a
dynamical system (Roberts & Mackley 1996). In a study of self-sustaining oscillatory
flows in a converging-diverging channel, Guzmán & Amon (1994) showed that the
transition from laminar to chaotic flow occurs via a series of Hopf bifurcations as the
Reynolds number is increased, consistent with the Ruelle–Takens–Newhouse scenario
of the onset of chaos. Chaotic particle trajectories have been verified and analysed
using measures such as fractal dimensions and Lyapunov exponents (Amon, Guzmán
& Morel 1996; Guzmán & Amon 1996).

The paper is organized as follows: § 2 presents the derivation of the equations of
motion for the vortex and passive particles in three different configurations, namely
the wavy-wall problem, the symmetrical channel and the skew-symmetrical channel.
Section 3 describes briefly the numerical solver. Section 4 examines the vortex motion,
analytically and numerically. We show that the vortices move in regular trajectories
with negligible influence from the neighbouring vortices. Section 5 looks at the
presence of Lagrangian chaos in all three configurations under the stirring action of
the vortices. Section 6 shows that chaotic mixing is primarily induced by the unsteady
dynamics of the separation bubbles which move and evolve in size with the vortices
at all times. The vortex core, free-flow region and mixing region in the flow field are
identified. We show that the dynamics are related to an oscillatory unidirectional flow
of a real fluid described by Sobey (1980). The structures of the stable and unstable
manifolds are presented, and their role in the mixing process is discussed. Section 7
investigates the efficiencies of passive mixing in the three configurations. The effect of
Brownian diffusion is found to increase lateral particle dispersion at the expense of
longitudinal particle dispersion. Section 8 considers autocatalytic reaction in the wavy
channel and the fractal form of the unstable manifold. Conclusions are listed in § 9.

2. Equations of motion
Two-dimensional irrotational, incompressible fluid flow is considered. The stream

function automatically satisfies the continuity equation, and the velocity potential
exists everywhere in the fluid except at singularities.

2.1. Flow over a wavy wall

Consider a uniform flow field of velocity U in the x-direction over a flat wall located
at y = 0. A point vortex which is rotating clockwise in the flow field has strength of
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−κ , and the actual circulation is −2πκ . Using the method of images (Milne-Thomson
1968), the complex potential function is given by

w(z) = Uz + iκ log((z − zv)/(z − zv)), (2.1)

where zv is the vortex position, and the overbar indicates the complex conjugate. The
flow regime is bounded by the wall (y � 0), and the complex velocity is

dw

dz
= U + iκ

[
1

z − zv

− 1

z − zv

]
. (2.2)

A conformal transformation that maps the flat wall in the z-plane on to a wavy
wall in the ζ -plane is given as

ζ = f (z) = z + iε exp(iKz), (2.3)

where the constants ε and K are the amplitude and the wavenumber of the wall
respectively (Taylor 1981). To satisfy the smooth-wall condition and ensure the
existence of a conformal transformation for the fluid region, the constants are
restricted such that εK � 1. The complex velocity at any point in the ζ -plane
can be calculated using the chain rule,

dW

dζ
=

dw

dz

dz

dζ
=

dw

dz

1

f ′(z)
= uξ − ivη. (2.4)

Equation (2.4) shows that the complex velocities are not mapped one to one but
are proportional depending on the mapping functions. Although the transformation
function ζ = f (z) can be chosen to be a simple analytic function, solution of the
inverse transformation z = f −1(ζ ) will require numerical iteration. To avoid this, the
vortex position in the ζ -plane is expressed in the form of ζ (z) = ξ (x, y) + iη(x, y).
Taking the time derivative, followed by the complex conjugate, the motion of passive
particles when tracked in the z-plane can thus be written as

dz

dt
=

1

|f ′(z)|2
dw

dz
. (2.5)

A direct transformation using (2.3) will then give the particle trajectories in the
physical domain in the ζ -plane but followed in the z-plane.

For vortex tracking, Routh (1881) introduced a correction term to account for the
fact that the transformation of the vortex path in one plane is not the path in the
new plane. Thus, the vortex motion in terms of its position in the z-plane is

dzv

dt
=

1

|f ′(zv)|2

{
U + iκ

[
1

zv − zv

+
f ′′(zv)

2f ′(zv)

]}
. (2.6)

Equation (2.2) can be extended to represent a row of 2N + 1 vortices which are in
phase and of equal strength, with one vortex spaced every wavelength λ (= 2π/K)
along the wall, within the uniform flow field of velocity U (figure 1), giving

w(z) = Uz + iκ

N∑
n=−N

log

[
(z − zv) + nλ

(z − zv) + nλ

]
, (2.7)

where the coordinates of the vortex array in the z-plane are (xv ± nλ, yv), n =
0, 1, . . . , N . The equations of motion for passive particles and the vortex (z = zv) are
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Figure 1. Wavy-wall problem with an array of vortices.

thus

dz

dt
=

1

|f ′(z)|2

{
U + iκ

N∑
n=−N

[
1

z − zv + nλ
− 1

z − zv + nλ

]}
(2.8)

and

dzv

dt
=

1

|f ′(zv)|2

{
U + iκ

[
N∑

n=−N

(
1

z − zv + nλ

)
+

f ′′(zv)

2f ′(zv)

]}
(2.9)

respectively.
Considering a system with an infinite number of vortices such that N = ∞, the

summation term in (2.8) and (2.9) can be written as

∞∑
−∞

1

z − zv + nλ
=

∞∑
−∞

z − zv

(z − zv)2 + n2(iλ)2
. (2.10)

Following Lamb (1953), we have

k

2π

∞∑
−∞

b

b2 + n2a2
=

k

2a
coth

πb

a
. (2.11)

Equations (2.8) and (2.9) thus become

dz

dt
=

1

|f ′(z)|2

{
U + iκ

[
K

2i
coth

K(z − zv)

2i
− K

2i
coth

K(z − zv)

2i

]}
(2.12)

and
dzv

dt
=

1

|f ′(zv)|2

{
U + iκ

[
K

2i
coth yvK +

f ′′(zv)

2f ′(zv)

]}
(2.13)

respectively.

2.2. Flow in a symmetrical wavy channel

We consider a channel of uniform width 2π where the walls are located at y = ±iπ in
the z-plane, and the flow field comprises a uniform velocity of U and a pair of point
vortices, one of strength κ located at z = zv and the other of strength −κ located at
z = zv . Using the method of images as before, the above problem becomes one of an
infinite number of vortex pairs in the y-direction. At an arbitrary point of interest z,
the complex velocity can be expressed as

dw

dz
= U + iκ

∞∑
n=−∞

[
1

z − zv + i2nπ
− 1

z − zv + i2nπ

]
. (2.14)
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Figure 2. Symmetrical wavy channel with an array of vortices.

Rewriting the summation term as in the preceding section followed by integration,
the complex potential function of the flow system is thus

w(z) = Uz + iκ log
sin i(z − zv)/2

sin i(z − zv)/2
, (2.15)

as obtained previously by Cannell & Ffowcs Williams (1973).
The uniform width channel in the z-plane above is conformally mapped to a

symmetrical wavy channel in the ζ -plane, using the mapping function

ζ = f (z) = z + iε[exp(iKz) − exp(−iKz)], (2.16)

where K again is the wavenumber. However, ε is no longer the amplitude of the wave
on the wall but is simply proportional to it (Taylor 1981).

Consider 2N + 1 pairs of in-phase vortices of equal but opposite strength in the
symmetrical wavy channel, with one vortex per wavelength of the wall, within the
uniform flow field of velocity U (figure 2), where the coordinates of the vortex array
in the z-plane are (xv ± nλ, ±yv), n = 0, 1, . . . , N . Following the derivation presented
in § 2.1, the motion of passive particles tracked in the z-plane is thus

dz

dt
=

1

|f ′(z)|2

{
U +

κ

2

N∑
n=−N

[
cot

i

2
(z − zv + nλ) − cot

i

2
(z − zv + nλ)

]}
. (2.17)

For vortex tracking, the correction term owing to Routh (1881) is introduced as
before, giving

dzv

dt
=

1

|f ′(zv)|2

{
U + iκ

N∑
n=−N

[
− 1

2i
cot

i

2
(zv − zv + nλ)

]
+

f ′′(zv)

2f ′(zv)

}
. (2.18)

2.3. Flow in a skew-symmetrical wavy channel

Consider a channel of uniform width 2π where the walls are located at y = 0 and
y = i2π respectively in the z-plane. The flow field comprises a uniform velocity U

and a pair of point vortices, one with strength κ located at z = zv and another
with strength −κ located at z = cv = (zv + λ/2) + i2π. Using the method of images
(figure 3), we first consider the infinite number of vortices in the y-direction. The
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Figure 3. Method of images for skew-symmetrical wavy channel.

complex velocity at a point of interest z can be written as

dw

dz
= U +iκ

∞∑
n=−∞

[
1

z − zv + i4nπ
− 1

z − zv + i4nπ
+

1

z − cv + i4nπ
− 1

z − cv + i4nπ

]
,

(2.19)
where the infinite summation term can be treated as in § 2.1.

Next, we consider 2N + 1 (−N to N) vortices along the upper wall and a
corresponding 2N (−N to N − 1) vortices along the lower wall such that symmetry is
maintained in the longitudinal direction (figure 4). Incorporating this into (2.19), we
get

dw

dz
= U + iκ

N∑
n=−N

M, (2.20)

where

M =
1

4i

[
cot

i(z − Zv)

4
− cot

i(z − Zv)

4
+ cot

i(z − Cv)

4
− cot

i(z − Cv)

4

]
(2.21)

and Zv = zv + nλ, Cv = [zv + λ(2n + 1)/2] + i2π.



508 W.-K. Lee, P. H. Taylor, A. G. L. Borthwick and S. Chuenkhum

y = i2π

y = 0

y

x

–κ –κ –κ –κ

κ κ κ κ κ

U
λλ/2 λ/2λ

Figure 4. Skew-symmetrical wavy channel with an array of vortices.

The motion of passive particles and vortices tracked in the z-plane can be described
by

dz

dt
=

1

|f ′(z)|2

{
U + iκ

N∑
n=−N

M

}
(2.22)

and

dzv

dt
=

1

|f ′(zv)|2

{
U + iκ

[
N∑

n=−N

(
−cot i(zv − Zv)/4

4i
− cot i(zv − Cv)/4

4i

)
+

f ′′(zv)

2f ′(zv)

]}

(2.23)

respectively, where the mapping function used to transform the uniform channel into
a skew-symmetrical wavy channel is

ζ = f (z) = z + iε[exp(iK(z − iπ)) + exp(−iK(z − iπ))]. (2.24)

3. Numerical solution of the flow model
The wall wavelength λ is chosen as the characteristic length L0 to non-

dimensionalize the length scales, giving x̃ = x/L0, ỹ = y/L0, ξ̃ = ξ/L0 and η̃ = η/L0.
Letting the mean incoming velocity U0 be the characteristic velocity, the dimensionless
velocity, vortex strength and time are thus given by Ũ = U/U0, κ̃ = κ/U0L0 and
t̃ = U0t/L0 respectively. Two dimensionless parameters are defined herein, namely
the dimensionless amplitude of vortex motion Λ (= ∆ξ/λ) and the Strouhal number
Ω (= λ/UT ), where T is the period of the resonance. The classical fourth-order
Runge–Kutta scheme is adopted to solve the equations of motion in the z-plane. A
time step ∆t of 0.01 gives stable, converged solutions and is used throughout, unless
otherwise stated. All figures are plotted using the dimensionless quantities, and the
tildes are dropped for convenience.

4. Vortex motion in vicinity of wavy wall
4.1. Perturbation analysis of vortex motion

For the wavy-wall problem (§ 2.1), the equilibrium position of the vortex is taken to be
in the middle of the wall corrugation such that ξe = π and ηe = 0. Solving the mapping
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Figure 5. Strouhal number of vortex as a function of εK .

function (2.3) then yields the corresponding position in the computational domain
given by xe = π and an inverse function ye exp(ye) = ε. Defining the vortex position as
zv = xv + iyv = (xe + X) + i(ye + Y ), where X and Y are small perturbations from the
equilibrium position in the z-plane, the case of a single vortex (N = 0) as described
by (2.6) can then be written as

dzv

dt
= Ẋ − iẎ , (4.1)

where the dot indicates time derivative. For a stationary vortex, the equilibrium vortex
strength can thus be expressed as

κe =
−2U (ε + exp ye)

−ε + exp ye coth ye + ε coth ye

. (4.2)

Setting the wavy-wall parameters ε = 0.5 and K = 1 after Taylor (1981), the
above formulations give ye ≈ 0.3517 and κe ≈ −0.7743U . Adopting unit uniform
flow (U = 1) throughout and κ = κe, different degrees of mixing, characterized by the
amplitude of vortex motion Λ, can thus be selected by defining only the initial vortex
position (xv0, yv0). For convenience, we choose xv0 = xe (i.e. X = 0) such that the
initial vortex position is always in the middle of the trough, and the sole parameter
that remains to be specified is the perturbation term Y where yv0 = ye + Y .

We note that the equilibrium vortex strength reduces monotonically with decreasing
value of ε, which represents the wall waviness for K = 1. In an experimental
study of vortices in wavy profiles, Wierschem, Scholle & Aksel (2003) reported
increasing critical flow thickness for vortex formation at reduced wall waviness. In
their experiment, the vortex formed is essentially stationary and symmetrical because
of steady gravity-driven flow. Hence, except in the limit in which ε vanishes, our
analytical equilibrium vortex strength in the middle of the furrow is analogous to
weak to strong vortical motion as wall waviness increases.

Writing the linear approximation of the single-vortex motion in the form of Ẋ = a1Y

and Ẏ = a2X, the coefficients a1 and a2 are readily determined. The angular frequency
of the vortex motion, ω = 2πf =

√
a1a2, is thus a function of ε. Figure 5 shows the

Strouhal number ω/UK (= λ/UT ) as a function of εK . The Strouhal number is
only weakly dependent on εK , reducing from a maximum of 0.27 when εK ≈ 0.3 to
slightly below 0.24 when εK → 1. The reversed and stronger form for εK < 0.3 is of
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Figure 6. Single-vortex motion along the wavy wall: �, initial position;
——, vortex trajectories.

little interest, as the small wall amplitude is unlikely to produce good mixing (Ottino
1989). In particular for εK = 0.5, the fundamental Strouhal number of a vortex is
given by ω = 0.2611.

Writing the solution of the linear approximation in the form of an undamped
sinusoidal wave as a function of time t , we define X = A sinωt and Y = −αA cosωt ,
where α is a scaling factor which relates the amplitude of the vortex motion in the
y-direction to that in the x-direction such that 0 < |α| < 1, and A is the dimensionless
amplitude of motion in the x-direction. Substituting into the linear approximation
and solving yields α = −0.1562.

Solving (4.1) to a third-order approximation, two resonant terms of the fundamental
Strouhal number arise because of the nonlinearity of the frequency of response
(Nayfeh 1985). A correction term of the order of A2 is applied to the Strouhal
number and the scaling factor respectively, giving

ω = ω0 + c1A
2, α = α0 + c2A

2, (4.3a, b)

where ω0 = 0.2611 and α0 = −0.1562 as previously determined. Substituting ω and
α into the modified linear approximation equations and solving, the coefficients c1

and c2 are obtained as 0.0266 and −0.0095 respectively. The complete solution to the
third-order approximation of the vortex motion is thus given by

X = A sinωt − 0.1107A2 sin 2ωt − 0.0035A3 sin 3ωt, (4.4a)

Y = 0.0320A2 − αA cosωt − 0.0084A2 cos 2ωt − 0.0032A3 cos 3ωt. (4.4b)

Using the same approach, a perturbation analysis for the N = ∞ case was performed
and resulted in similar expressions for the Strouhal number and the scaling factor.

4.2. Vortex path in a wavy trough

Figure 6 shows the path taken by a single vortex when released from five different
initial positions. If the vortex is too close to the wall, the coupling effect with its
image has a dominant influence, causing the vortex to move upstream along the wall.
On the other hand, if the vortex is too far away from the wall, the uniform flow effect
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Figure 7. Comparison of vortex path derived from perturbation analysis (– – – – –) and
numerical iteration (——): N = 0, zv = (π, 0.260), Y = −0.09.

sweeps the vortex downstream, tracing the wall topography. Generally, if both κ and
U are positive or negative, then the vortex will be swept downstream or upstream
respectively by the uniform flow regardless of initial position. If U = 0, the vortex will
couple with its image to form a simple vortex pair which advances at a velocity of
κ/2d along the x-direction, where d is the distance of the vortices from the wall. Our
interest lies mainly with vortices located in the vicinity of the wall trough where the
opposing flow effect from their respective images and the uniform flow field causes
the vortices to be trapped in hydrodynamic oscillations.

Figure 7 compares the analytical vortex paths (N = 0) derived in § 4.1 with those
obtained numerically from Lagrangian tracking. A small time step of ∆t = 0.001 is
adopted to simulate accurately the vortex motion. It can be seen that analytical results
obtained from the perturbation analysis are in good agreement with the numerical
predictions for small perturbation |Y | � 0.09 (A � 0.2061).

4.3. Frequency–amplitude correlation

Figure 8 plots the Strouhal number Ω versus the dimensionless amplitude Λ for wavy-
wall cases with a single vortex (N = 0) and an infinite number of vortices (N = ∞).
The solid curves give the frequency–amplitude correlation calculated numerically for
different perturbations of initial vortex position, whereas the dashed curves plot the
analytical frequency–amplitude correlation as described by (4.3a) where the equivalent
dimensionless forms may be written as Ω = ω/UK and Λ = A = ∆x/λ. From the
numerical solutions, we can see that Ω increases slowly with respect to Λ but shows
an abrupt drop as Λ approaches the wavelength of the wall. This corresponds to
lateral vortex motion beyond the wall crest level which approaches the point of
escape from the influence of its image. The Strouhal number of the vortex array
is slightly lower than the case of a single vortex. For linear perturbation away
from the equilibrium position (Λ = 0), Ω equals 0.2611 and 0.2477 for the cases
N = 0 and N = ∞ respectively, which agree well with the analytical results in § 4.1.
The third-order analytical approximation gives an excellent approximation of the
frequency–amplitude correlation for perturbation up to Λ ∼ 0.5 for both N = 0 and
N = ∞.
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Figure 8. Comparison of frequency–amplitude correlation derived from perturbation
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Figure 9. Effect of neighbouring vortices on vortex path in wavy-wall problem. The inset
shows similar plots for (a) symmetrical wavy channel (N = 0, 5, 10) and (b) skew-symmetrical
wavy channel (N = 1, 5, 10).

4.4. Effect of neighbouring vortices

We next examine the effect of having more than one vortex along the wall on the
vortex path. The neighbouring vortices, separated by the corrugations of the wall,
are in phase and thus move identically. Figure 9 shows, for the wavy-wall problem,
the paths traced by a single vortex (N = 0) in comparison with the path traced by
the same vortex with three neighbours on both sides (N = 3) and when there is an
infinite number of vortices along the wall (N = ∞). The results suggest that the vortex
motion is only weakly affected by the presence of neighbouring vortices, and thus
increasing N has a diminishing effect on the individual vortex path. Essentially, the
regular trajectories can be attributed to the lack of interactions between the isolated
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Figure 10. Particle trajectories under uniform flow field: (a) symmetrical wavy channel;
(b) skew-symmetrical wavy channel.

vortices. Figures 9(a) and 9(b) present similar plots for the symmetrical wavy-wall
channel and skew-symmetrical wavy channel respectively.

5. Lagrangian particle tracking
In this section, we examine the trajectories of particles released into the flow field at

different distances from the wall. The wall amplitude and wavenumber for the wavy-
wall problem is as previously set, whereas the channel parameters for both symmetrical
and skew-symmetrical wavy channels are selected as ε = 0.35 and K = 0.45, following
Taylor (1981). For optimum mixing effect, vortex motion with maximum amplitude is
desirable (Ottino 1989). However, vortices which move beyond the crest level can only
be kept from being swept away by the uniform flow by means of external stirring.
Hence, we limit the amplitude of motion such that the vortex chosen has a trajectory
which remains within the corrugations.

5.1. Lagrangian trajectories

In the absence of vortex stirring (κ = 0), particles are purely advected by the uniform
flow and thus trace the streamlines which follow the shape of the wall (figures 10a
and 10b). In the symmetrical wavy channel (figure 10a), the particle located at the
middle of the channel follows a horizontal trajectory, separating the channel into two
non-interacting zones. The presence of vortices in the flow field alters the particle
trajectories significantly, depending on particle initial positions. Figures 11(a)–11(c)
show diverse particle motions under the stirring action of an infinite number of
vortices for all three wavy configurations, where particles which are entrained by a
vortex can be easily recognized from the looping in their trajectories.

For the wavy-wall problem (figure 11a), all four particles are observed to pass over
the third trough without being entrained. One of the particles is entrained twice by
the vortex in the second trough, and another trajectory is caught in resonance with
the vortex in the fifth trough and is only ejected after a considerable time. Particle
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Figure 11. Particle trajectories for the case with infinite number of vortices in (a) wavy wall,
(b) symmetrical wavy channel and (c) skew-symmetrical wavy channel.

distances from the wall are generally altered after each successive interaction with the
vortices, regardless of whether particles are entrained or else oscillate slightly as they
pass over each trough.

For the symmetrical wavy channel (figure 11b), the particle at the middle of the
channel still traces a horizontal trajectory which forms an invariant centreline. Hence,
the mixing efficiency of a symmetrical wavy channel is only comparable to that of
a wavy wall bounded by a smooth wall on one side. In figure 11(c), nine particles
are seeded into the skew-symmetrical wavy channel at ξ = 0, one of which is in
close proximity to the vortex centre and is thus caught in extended resonance with
the vortex motion. Here, an adaptive time step is adopted to resolve particle tracks
in close proximity to the singular point at a vortex centre, and care is taken to
avoid the singularity which is not of interest (or consequence) in the present study.
We further note that (2.17) and (2.22) for particle motions in the symmetrical and
skew-symmetrical wavy channels are only evaluated for finite values of N because a
double infinite summation for vortices arising from the method of images combined
with a second infinite summation for the array of vortices along the channel is
not possible in analytic form. Hence, the case in which N = ∞ in the channel is
replicated by employing periodic end boundary conditions with prescribed upstream
(x = 0) and downstream (x = λ) limits. The value of N is arbitrarily chosen to be
five to approximate, at reasonable computational cost, the vortex path where there
are infinite number of vortices along the channel, recalling that further increasing
N has a diminishing effect on the vortex trajectory (§ 4.4). The number of times
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a particle exits and re-enters the computational domain is then tracked so that a
continuous trajectory can be mapped to the physical domain. We stress that the
periodic boundary condition serves to replicate a physical channel of infinite length
with an infinite number of vortices in the flow direction and should not be taken as
producing a closed system.

In figure 11, the observation of chaotic particle trajectories in all three wavy
configurations indicates that the systems are indeed chaotic (Ottino 1989; Rom-
Kedar et al. 1990). Since each vortex is trapped locally within a trough and does
not interact with its neighbours except with its own image, the observed chaotic
particle motion is attributed entirely to the unsteady motion of a single vortex in its
locality. We note that if a finite number of vortices is employed along the wall or in
the channel, then advected particles approach the vortex-populated furrows from the
asymptotically simple region and eventually escape to the asymptotic region again.
In either case, the systems exhibit transient chaos; i.e. chaotic scattering of advected
particles occurs over a finite time on interaction with the vortices.

The Lagrangian chaos present in our model is in qualitative agreement with
the laminar and transitional flow regimes for Reynolds numbers of 125 and 400
reported by Guzmán & Amon (1996) and Amon et al. (1996) for oscillatory flow
in a sinusoidal channel. In both papers, the particle trajectories are determined by
integrating the advection equation dx/dt = u(x, t), where u(x, t) is the numerically
simulated Eulerian velocity field, and exponential divergence of initially nearby
particles is verified by positive finite-time Lagrangian Lyapunov exponents of selected
test particles. Furthermore, the onset of Lagrangian chaos is associated with the
first Hopf bifurcation. More recently, Biemond et al. (2008) showed, by means of a
topological argument, that the onset of chaotic motion follows immediately the onset
of periodic motion of the fluid, provided stagnation points are present in the flow. In
§ 6, we show that this is indeed the case for the present problem.

5.2. Snapshots of particle positions

Figures 12(a) and 12(b) provide snapshots of a line of 301 equally spaced particles
advecting in the symmetrical wavy channel. Figure 12(a) shows the time evolution
of the line of particles in the absence of any vortices. Unobstructed particles in the
middle of the channel form a leading front which propagates downstream. As it
traverses the converging and diverging sections of the channel, the flow undergoes
alternate acceleration and deceleration and thus narrows and widens correspondingly.
The width of the leading front eventually reduces, and particles nearer the walls
increasingly lag behind, as they become held up in ever larger numbers of furrows.
The line of particles is stretched in the diverging section of the channel and is folded
at the wall corrugations. Particles along the upper and lower walls are of course
symmetric about the invariant centreline.

In figure 12(b), the same line of particles is subjected to vortex stirring. In addition
to stretching and folding, particles become dispersed. Particles near the walls soon
break up from the leading front and become increasingly scattered. The non-entrained
portion of the leading front is advected further ahead than in the previous case when
there is no vortex in the flow field (see particle line for t/T = 2 and t/T = 6). This is
due to the increased velocity induced by the counterclockwise rotating vortices at the
upper wall and clockwise vortices at the lower wall. In contrast, entrained particles
spend more time in the furrows. Consequently, these particles lag further behind the
leading front than their counterparts in the case without vortices. Increased particle
scatter is evident. Symmetry about the centreline is nonetheless maintained.
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Figure 12. Snapshots of positions of a line of 301 particles (�) in the symmetrical wavy
channel: (a) no vortices; (b) infinite number of vortices.
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Figure 13. Snapshots of positions of a line of 301 particles (�) in the skew-symmetrical
wavy channel: (a) no vortices; (b) infinite number of vortices.

Figures 13(a) and 13(b) show similar plots for the skew-symmetrical wavy channel.
When there are no vortices (figure 13a), the line of particles deforms unevenly because
of asymmetry, forming a leading front which is skewed in an oscillatory manner
where the profile is influenced by the nearest corrugation. For the symmetrical wavy
channel, the line of particles occupies an increasing number of furrows with time
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Figure 14. Vortex trajectory (——) and positions (�) at T/10 increment in a wavy trough.
Also shown is the separation bubble (– – – – –) corresponding to the vortex position marked ×.

and is stretched and folded. Particles sufficiently distant from the wall are advected
primarily under the influence of the uniform flow field and tend to traverse furthest.

In figure 13(b), vortical stirring is observed to obliterate the line of particles in less
than two cycles (by t/T = 2). Similar to the symmetrical wavy channel, the leading
front moves further ahead, whilst the entrained particles lag further behind. We note
that certain particles initially located close to the vortex centre became trapped in
the trough where they are released throughout the duration of the simulation. This
agrees with the Lagrangian trajectories shown in figure 11(c) and those presented
by Guzmán & Amon (1996) and Amon et al. (1996). Contrary to the symmetrical
wavy channel, there is no symmetry in the particle distribution, and hence mixing can
potentially take place across the channel width, making the skew-symmetrical channel
superior to its symmetrical counterpart with regard to mixing efficiency. In § 7.2, we
show that cross-centreline transport in the symmetrical wavy channel is possible if
the effect of diffusion is included.

6. Dynamics of separation bubble
The mixing effect observed in § 5 can be associated with the presence of a separation

bubble in the vicinity of the vortex, whose size and shape evolve continuously as the
vortex moves. To examine the dynamics of the separation bubble, we consider a
case involving a single furrow in the wavy wall, where t/T = 0 and t/T = 0.5
correspond to instants when the vortex is located at the highest and lowest positions
respectively, in the middle of the furrow (figures 14a and 14b). The separation bubble
is derived from the instantaneous streamlines separating an exterior region of positive
stream function from an interior region of negative stream function. The separation
bubble always joins the wall at two separation points, each of which constitutes
an instantaneous stagnation point in the flow field. As pointed out in § 5.1, with
the presence of stagnation points in the flow, the onset of chaotic motion follows
immediately the onset of periodic motion of the fluid (Biemond et al. 2008).

6.1. Variation of separation bubble size and vortex motion

The size of the separation bubble Ab is derived from the physical domain and is
normalized by its largest value at t/T = 0. Figure 15 shows that Ab reduces over
half the cycle as the vortex moves clockwise and expands in the second half of the
cycle. The time-dependent variation of Ab is closely related to that of the vortex
vertical position yv and the changes in distance between the two separation points
(see inset in figure 15), both of which reduce from t/T = 0 to t/T = 0.5. The slight
increase in Ab at the lowest point in the trough (t/T = 0.5) can be solely attributed



518 W.-K. Lee, P. H. Taylor, A. G. L. Borthwick and S. Chuenkhum

1.0 0.12

0.10

0.08

0.06

0.04

0.02

0.8

0.6 0.15
0 1.0

0.25

	ξ

Ab

t/T

t/T

0.4

0.2

0 0.2

yν

yν

Ab

0.4 0.6 0.8 1.0

Figure 15. Temporal variation of the size of separation bubble Ab and vortex vertical distance
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1.0

0

U

–0.1

–0.2

t/T
0 0.2 0.4 0.6 0.8 1.0
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to the increase in wall curvature (figure 14). The changes reverse during the second
half of the cycle, as expected. Overall, the size of the separation bubble varies by
a factor of 3.1 over the cycle, implying that significant mass exchange is likely to
take place across the separation boundary, favouring mixing as anticipated from the
large-amplitude motion of the vortex.

Figure 16 shows the relative motion of the separation points with respect to the
vortex. As the vortex traverses from t/T = 0 to t/T = 0.3, the separation points
move slower than the vortex. From t/T = 0.3 onwards, the vortex starts to move
upstream along the wall (see instantaneous vortex position in figure 14). The upstream
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Figure 17. Velocity (U,V ) of vortex tracked in the z-plane (� indicates T/10 increment). The
inset shows velocity U of the two separation points with respect to their position ξ in the
physical domain.

separation point moves ahead at a slightly larger velocity, whereas the downstream
separation point trails behind (figure 16). On approaching the lowest point in the
trough, the vortex velocity continues to increase at a higher rate compared with that
of the two separation points. The inset of figure 17 shows the velocity U of the
separation points with respect to their positions. When the vortex moves upstream
close to the wall (lower half of the loop) U is twice that when the vortex moves
downstream away from the wall (the plateau on the upper half of the loop). The
factor of 2 is slightly less than that of the vortex motion where Umax/|Umin| ≈ 2.3
(figure 16). Figure 17 also displays the velocity components (U, V ) of the vortex.
At t/T = 0, the vortex velocity in the x and y directions are U = Umax and V = 0
respectively (rightmost point on plot). As the vortex rotates in the clockwise direction,
V increases slightly and then changes to negative as the vortex moves downwards into
the trough. Meanwhile, U reduces. By t/T = 0.5, U reaches its negative maximum,
whereas V returns to zero (leftmost point on the plot). Whereas the magnitude of U

varies by a factor of 2.3, that of V on the other hand varies by a much larger factor
of 15.3. Relating the velocity of the vortex to its instantaneous position (figure 14),
it is obvious that the sweeping motion along the wall (from t/T = 0.3 to t/T = 0.7)
occurs rapidly compared with the downstream motion when the vortex is distant
from the wall. This suggests that the vortex image has a dominant influence. In a
complete cycle, the U–V plot thus resembles a highly distorted figure ‘8’.

6.2. Particles escape from the separation bubble

We proceed to examine the escape rate and particle trapping within the separation
bubble. Particles are seeded into the separation bubble at equal intervals over the
computational domain. The corresponding particle distribution in the physical domain
is slightly distorted because of the mapping functions; however, this does not pose
any issue for the present qualitative investigation. The number of particles used is in
the order of 1000 for the case in which the initial vortex positions are set at t/T = 0.5.
Retaining the same intervals, the number of particles used when the initial vortex
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Figure 18. Sequential snapshots of particles escaping from within the separation bubble
(– – – – –) in the wavy-wall problem (η versus ξ ): (a)–(f ) show the fate of particles seeded into
the separation bubble from t/T = 0 through to t/T = 0.5 at T/10 increment; (g)–(i ) show
the fate of particles seeded into the separation bubble from t/T = 0.5 through to t/T = 0.7
at T/10 increment.

position is located at t/T = 0 is thus approximately a factor of 3 more, proportional to
the increase in the bubble size. Adaptive time stepping is used to track accurately the
particle trajectories in close proximity to the singular point in the vicinity of the vortex
centre. Particles located within a distance of less than 0.05/λ from the vortex centre
are discarded. These constitute less than 2 % of the total number of particles seeded.

Figure 18 shows sequential snapshots of particles escaping from within the
separation bubble in the wavy trough, where the vortex initial position is set at
t/T = 0. In figure 18(b), we can see that a large proportion of seeded particles is
ejected from the downstream surface of the bubble in the first tenth of the cycle
as the separation bubble moves to the right. These particles form a series of arrow-
like features that point in the direction of their motion and tend to encircle the
vortex. Particles to the left of the arrows have only moved minimally from their
initial positions near the downstream surface of the bubble and lag behind as the
vortex traverses. Particles to the right of the arrows, which originate from the now-
white background in the separation bubble, have moved a considerable distance
comparatively. We note that the arrow-like feature is an artefact of the finite number
of particles followed. A compact blob would result if more particles are tracked
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(see e.g. figures 26 and 28). The white background essentially represents particles
outside the separation bubble, herein referred to as white particles. It can be observed
that during this same time period, white particles sweep into the bubble rapidly from
the upstream surface, curling past the vortex centre, suggesting that particles to the
east of the vortex possess relatively larger velocity compared with those to the west,
which is confirmed by the instantaneous velocity field (not shown). The boundary
between white particles and seeded particles is the original separation boundary which
is now greatly stretched under the stirring action of the vortex. Its deformed shape is
akin to the unstable manifold numerically computed by Rom-Kedar et al. (1990) using
the Melnikov technique for small perturbation. Further discussions on the stable and
unstable manifolds in the present model are given in the next section. In figure 18(c)
(t/T = 0.2), it can be seen that white particles have curled further, reaching the
south-east of the vortex, effectively completing a loop around it. Note also that they
have exited the separation bubble, and the leading front is attempting to re-enter the
bubble. Meanwhile, the tail end of the train of particles still lingers in the vicinity
of its earlier position. Figure 18(c) also shows the formation of a tongue-like feature
which stretches downstream, leading eventually to particles escaping from the trough
(figure 18d ). When the vortex starts to sweep along the wall, it is relatively close to
the downstream wall, which hinders particles from winding further around the vortex.
Consequently, both seeded particles and white particles drain away under the action
of the uniform flow (figure 18e). By t/T = 0.5 (figure 18f ), the vortex centre is at its
lowest position and is surrounded by the remaining seeded particles which are held
in close proximity to the vortex centre thereafter. A considerable proportion of the
separation bubble is now filled with white particles in the outer band. Re-seeding
the separation bubble at t/T = 0.5 (figure 18g), figure 18(h) shows that within one
tenth of a cycle, a large fraction of particles is swept downstream from the bubble
as the vortex moves upstream at relatively high velocity. We note that the number of
seeded particles which remains trapped around the vortex (figure 18i ) is essentially
the same regardless of whether re-seeding is performed at t/T = 0.5. This suggests
that particles trapped are solely those initially in close proximity with the vortex
centre, whereas re-seeded particles which fill the white band within the separation
bubble in figure 18(f ) are essentially all expelled. Hence, this confirms the presence of
a non-escape zone which may be referred to as the vortex ‘core’, a generic feature of
point-vortex dynamics (e.g. Babiano et al. 1994; Amon et al. 1996; Boffetta, Celani
& Franzese 1996; Neufeld & Tél 1997, 1998). The series of snapshots in figure 18
also shows that white particles, though freely entering and escaping the separation
bubble, cannot penetrate the vortex core occupied by seeded particles. This is due
to the presence of irrational orbits known as Kolmogorov–Arnold–Moser tori, which
act as transport barriers between the stable region in the vortex core and the unstable
region outside (e.g. Rom-Kedar et al. 1990). Hence, the vortex singularity is essentially
shielded by the surrounding regions of permanently trapped fluid and plays no role
in the unsteady mixing process. Indeed the same dynamics would result if the vortex
core is replaced by a non-singular vortex patch of constant vorticity whilst preserving
the same total circulation. In § 7.2, we show that if diffusion is considered, it is then
likely that particles within the vortex core will eventually escape (Chorin 1973). For
the active-mixing problem (§ 8), the vortex core is exploited as a source of reacted
catalytic particles with which approaching particles entering the separation bubble
may react.

Figure 19 shows the fraction of particles trapped, n, as a function of non-
dimensional time t/T in a fixed observation window which consists of a single trough.
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Figure 19. Fraction of particles trapped in the trough, n, as a function of non-dimensional
time and effect of number of particles.

Particles seeded within the separation bubble escape primarily in the first cycle, after
which there are only a few instances when a small number of particles are expelled as
the vortex traverses past its lowest position at high velocities, causing those particles
which fail to wind around the vortex to drift downstream. Figure 19 also shows that
n is not sensitive to the total number of particles seeded. In a study of a continuously
modulated free-surface flow, Wilson et al. (2006) reported equivalent temporal
behaviour of the percentage of initial tracers remaining in seeded-eddy simulations
in a study of mixing effects involving a separation bubble attached to a curved free
surface. The drop in the tracer population is associated with the detrainment of fluid
from the eddy region, whereas the flat plateau represents the entrainment phase,
noting that the incoming fresh fluid is devoid of tracers. For large perturbation,
as considered in the present study, a considerable proportion of the seeded
tracers is ejected within the first cycle. The subsequent cascading reduction of tracer
population obtained by Wilson et al. (2006) is however not obvious in our simulation,
owing to the large perturbation adopted to optimize mixing. Rom-Kedar et al. (1990)
obtained a similar finding from the simulated escape of particles from a lobe. Likewise,
Wierschem & Aksel (2004) observed similar behaviour in an experimental study of
the loss of fluorescent tracers from an eddy in a wavy corrugation.

Despite the foregoing discussion, we note that the calculation of n is based on
the number of particles which remain in the trough instead of in the separation
bubble. This explains why n only reduces after a short lag, because of the finite
time taken for any of seeded particles to reach the downstream boundary of the
observation window. Wilson et al. (2006) have used this approach to calculate n

because the end of the domain is easier to define. We use the same approach in order
to address boundary particles in the potential model. Should n be computed based
on the fraction of particles that never leave the separation bubble, its value will not
approach a constant but will alternate between two discrete values, the difference of
which represents the small number of boundary particles which periodically enter and
leave the separation bubble. Considering the case in which vortex motion commences
from the position t/T = 0, boundary particles located to the east of the separation
bubble are swept downstream, whereas those inside the separation bubble are ejected
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Figure 20. Instantaneous snapshots of particles’ motion (�) on a reference frame co-moving
with the vortex (×): (a) t/T = 0 or t/T = 1; (b)–(d ) correspond to t/T = 0.4, 0.5 and 0.6
respectively. Note that the vacated zone in the vicinity of the vortex represents the vortex core
(——, separation bubble).

upstream as the bubble moves in the opposite direction. This is because the wall is
an invariant manifold, unstable downstream but stable upstream of the downstream
separation point in the perturbed system of the vortex motion (Rom-Kedar et al.
1990). The opposing motion means that particles will inevitably become increasingly
close to one another on the wall, forming a conglomerate point at plot resolution.
For a wavy wall or channel that has an infinite number of vortices, a conglomerate
point of boundary particles thus exists in each and every trough. These conglomerate
points assume an oscillatory gliding motion along the wall upstream of the trough,
entering and leaving the separation bubble periodically but unable to traverse the
separation bubble.

6.3. Mixing region, free-flow region and vortex core

In the preceding section, it was observed that particles are able to enter and leave the
separation bubble as it swells and shrinks. Substantial mass exchange between the flow
and the separation bubble is induced by the stirring action of the vortex. Consider a
large ensemble of particles seeded over four consecutive troughs horizontally extending
up to elevation y = 0.24 in the z-plane. A single vortex is introduced in the rightmost
seeded trough such that there is a continuous stream of particles approaching the
vortex over one complete cycle. The region within 0.05/λ of the vortex centre, defined
as the vortex core, is herein excluded. The motion of particles is observed using a
reference frame moving with the single vortex, the initial position of which is set at
t/T = 0.

As the vortex and particles are set in motion, particles entrained are greatly
stretched and wind around the vortex at high velocities (figure 20a), resembling
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the motion of white particles in figure 18(b). This results in a chaotic-sea-of-mixing
region characterized by apparent particle scatter. The mixing region at this instant is
significantly larger than the separation bubble and comparable to the size of the wavy
trough. Mixed particles are subsequently ejected when the vortex sweeps downstream
along the wall. We note that particles which have undergone mixing appear ‘scattered’
in the plots (figures 20a and 20b), whereas the others maintain a regular but distorted
arrangement with neighbouring particles. Since no further particle entrainment occurs
after t/T = 0.4, the size of the mixing region shrinks. By t/T = 0.5 (figure 20c), the
mixing region is virtually non-existent, and it develops again shortly after t/T = 0.6
(figure 20d ). Particles entering and leaving the separation bubble during these times
do not wind around the vortex but stream past the vortex core. Indeed, the mixing
region ‘vanishes’ from the plot as a result of the finite number of particles deployed.
Our main interest in this context is the fact that the size of the mixing region varies
greatly over half a cycle.

Whilst the snapshots of the ensemble of particles in figure 20 provide a glimpse of
the mixing and free-flow regions (and indirectly the vacated, non-penetrable vortex
core), the transient nature of chaos means that each of these regions is defined in
terms of the respective sets of trajectories. We may thus construe the mixing region
to be made up of a set of trajectories which wind around the vortex a finite number
of times. Trajectories which never wind around the vortex constitute the free-flow
region, and trajectories which infinitely wind around the vortex make up the vortex
core (e.g. Rom-Kedar et al. 1990; Amon et al. 1996; Budyansky, Uleysky & Prants
2007). Trajectories of the mixing region and the free-flow region are responsible for
mass exchange in and out of the separation bubble, whereas the vortex core behaviour
is essentially isolated from the flow field. The free-flow region further out is not seeded
and thus appears as a band of white particles in the upper part of the plots (see
figure 20a). Particles in this region do not enter into the vicinity of the vortex or
the trough and are advected mainly by the uniform flow with superimposed small
oscillatory motion induced by the vortex. In the simulation shown above, all seeded
particles pass the vortex after one and a half cycles. No particle is trapped, and none
penetrate into the vacated vortex core.

Our present model of a unidirectional uniform flow field superposed with oscillatory
vortex motion is analogous to aspects of oscillatory flow of a real fluid as studied by
Sobey (1980) and Ralph (1986) using Navier–Stokes solvers. Sobey (1980) investigated
the flow structure in wavy channels by considering different ratios of the oscillation
amplitude to the mean flow amplitude. In the present study, the dimensionless
amplitude for vortex motion is of the order of 0.6, 0.65 and 0.75 for the wavy wall,
symmetrical channel and skew-symmetrical channel respectively under unit uniform
flow. Hence, the cases considered herein approach the oscillatory unidirectional flows
considered by Sobey (1980), where the ratio of the oscillatory component to the
mean flow is taken to be of the order of (1 − 0.55)/0.55 ≈ 0.8. Noting that the
omnipresent vortex core is a non-interacting region, the birth of the mixing region
is analogous to flow separation in oscillatory flow of a real fluid, which leads to
vortex formation. During the first half-cycle, the separated region in the real fluid
grows and the vortex bulges into the mainstream, eventually occupying most of the
trough. The same behaviour is observed in the present model from t/T = 0.5 to
t/T = 1.0. In the second half of the cycle, the real fluid flows into the upstream part
of the furrow as the flow accelerates, thus displacing the vortex which is eventually
eliminated as the bulk flow accelerates. Whereas the periodic shedding of vorticity
is not relevant in our model, the process of vortex decay is replicated in the form
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(a) (b)

Figure 21. The stable (– – – – –) and unstable (——) manifolds at (a) t/T = 1.0 and (b)
t/T = 0.3. Here, the separation bubble is shown as the thick solid line.

of a vanishing mixing region that persists from t/T = 0 to t/T = 0.5. Essentially,
the present model, which comprises a uniform flow with internally induced unsteady
oscillation, produces the same dynamics in the periodic growth and elimination of
the mixing zone as an externally induced unsteady oscillatory flow of a real fluid,
noting that the qualitative flow behaviour is not sensitive to the wall profile (Sobey
1980). The similarity between the present results and the solutions of the unsteady
Navier–Stokes equations by Sobey (1980) and Ralph (1986) lend much merit to the
point-vortex model in the study of vortex-induced mixing.

6.4. The invariant manifolds

In this section, we endeavour to examine the unstable and stable manifolds in greater
detail. Figure 21 shows exemplar plots of the instantaneous unstable and stable
manifolds, numerically constructed by releasing a particle at each time step at the
instantaneous hyperbolic points (i.e. the stagnation points A and B in figure 22) in
the flow field in forward and backward times respectively. Particles starting on these
invariant manifolds in the continuous time flow emerge as an infinite set of discrete
points on these curves in the Poincaré section. In snapshots of a flow, the unstable
manifolds appear as smooth curves. The stable manifolds, however, are not readily
observable. Because of the symmetry of the system in space, these invariant curves are
essentially mirror images of one another about the vertical axis through the middle
of each furrow, for instance at t/T = 1.0 (figure 21a) and similarly at t/T = 0.5 (not
shown). At other times, such as t/T = 0.3 (figure 21b), the mirror image of the curves
about the vertical axis through the middle of the furrow gives the structure of the
invariant curves at t/T = 0.7 owing to the symmetry of the system with time over a
cycle, noting that the stable and unstable manifolds are thus swapped in the mirror
image construction (figures 22b and 22d ). Hence, the unstable manifolds for a flow
from left to right become the stable ones for a flow from right to left, and vice versa.

In § 6.2, we have highlighted that the wall is an invariant manifold. With reference
to figure 22, the unstable manifold to the east of point B and the two branches of the
stable manifold towards point A (arrows in the figure indicate direction of particle
motion along the invariant curves) lie exactly on the wall. In the unperturbed system,
the unstable manifold of point A is also the stable manifold of point B , and its
position coincides with the separation bubble, thus separating the exterior free-flow
region and the interior region. In this case, the manifold structure is topologically
equivalent to one half of the oscillating vortex-pair flow (e.g. Rom-Kedar et al. 1990;
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Figure 22. Schematic illustration of the stable (– – – – –) and unstable (——) manifolds at (a)
t/T = 1.0, (b) t/T = 0.3, (c) t/T = 0.5 and (d ) t/T = 0.7. The two shaded areas bounded
by segments of the unstable and stable manifolds defined by the intersection points (i), (ii),
(iii) and (iv) represent two different lobes which transport the fluid contained as the invariant
curves traverse with the vortex motion. For clarity, only the separation bubble of (c) is shown.

Rom-Kedar & Wiggins 1990; Wilson et al. 2006). When the system is perturbed, the
spiral nature of the invariant manifolds produces infinite self-similar criss-crossing
tangles at all scales (figures 21 and 22). In the discussions that follow, we wish to
highlight the role of the infinite set of intersections between the stable and the unstable
manifold in the mechanism for mass transfer into and out of the mixing region. In
§ 8, we investigate the fractality of the invariant manifolds.

Since no flow is able to cross the invariant curves except by diffusion only (which
will be considered separately in § 7.2), the invariant curves divide the flow field into
a free-flow region in the exterior and a recirculating zone in the interior (which
comprises the mixing region and the vortex core). A parcel of fluid bounded by a
segment of the unstable manifold and a segment of the stable manifold between
two successive intersection points can be defined as a ‘lobe’ where the fluid which
lies within it remains there for all time (e.g. Rom-Kedar et al. 1990; Rom-Kedar &
Wiggins 1990; Wilson et al. 2006). Figure 22 shows the evolution of two lobes as the
invariant curves traverse with the vortex. Note that figures 22(a) and 22(c) match the
time instants of figures 20(a) and 20(c) respectively. On the other hand, figures 22(b)
and 22(d ) are at different times from those in figures 20(b) and 20(d ) in order to
facilitate visualization of the invariant curves. Figure 22(b) shows that lobe P carries
the fluid parcel from the upstream into the recirculating zone. Driven by the growing
unstable manifold, the fluid in lobe P subsequently undergoes mass exchange in and
out of the separation bubble but remains contained within the outermost invariant
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manifolds; that is, the invariant manifolds cover a region significantly larger than
the separation bubble during these times (see figures 20a and 22a). When the lobe
reaches the downstream end of the trough, the stable manifold starts to contract.
Consequently, the lobe is ejected together with the bounding segments of the unstable
manifold (figure 22f ). Lobe Q undergoes the same processes as lobe P except that it
grows earlier, shrinks later and contains a smaller quantity of fluid. Hence, particles
closer to the vortex centre are entrained longer. Note also that the lobes enter and
leave the separation bubble a finite number of times from their ingestion to their
eventual ejection.

Just before the vortex reaches its lowest position (at approximately t/T = 0.4), the
stable manifold contracts to a minimum, and the last remaining lobe is stretched in the
direction of the unstable manifold, draining the fluid it contains downstream. When
the vortex starts to move upwards from its lowest position, a new lobe is entrained
along the stable manifold of the hyperbolic point B . At this instant (t/T = 0.5), there
is only a single intersection between the new stable manifold and the diminishing old
unstable manifolds (figure 22c). A new unstable manifold grows immediately after
the old one detaches from the hyperbolic point A (at approximately t/T = 0.6).
During the transition, the region covered by the invariant curves is smaller than the
separation bubble, which relates well to figure 20(c).

Wilson et al. (2006) have shown that the entraining lobe and the detraining lobe can
be overlapped. They have observed that under large perturbation, self-intersecting
turnstiles are responsible for ejection of fluid ingested during the same cycle. The
mechanism is similar to that shown in figure 18. A close examination of the evolution
of the lobes in figure 22 suggests that the same lobe undergoes the entraining phase
from t/T = 0.5 to t/T = 1.0 (or equivalently from t/T = −0.5 to t/T = 0) and the
detraining phase from t/T = 0 to t/T = 0.5. In fact, owing to the spiral structure of
the invariant curves, the exterior and the interior of the lobes cannot be distinguished.
For the same reason, the ‘turnstile’ structure in the vicinity of the hyperbolic points
is also different from that described by Rom-Kedar & Wiggins (1990) and Wilson
et al. (2006). Here, the same lobe (e.g. lobe P ) undergoes simultaneous contraction
from both sides of the unstable manifold during the entraining phase (figure 22b)
and later simultaneous stretching at both sides of the stable manifold during the
detraining phase (figure 22d ). Experimentally, Wierschem & Aksel (2004) have shown
that the turnstile lobe mechanism is responsible for the breakup of the separatrix,
thus permitting a spiralling inflow and outflow motion which governs the material
exchange between the eddy in the furrow and the overlying steady flow.

7. Mixing efficiencies
7.1. Statistical dispersion of passive particles

This section compares the mixing efficiencies of the three different configurations:
the wavy wall, symmetrical wavy channel and skew-symmetrical wavy channel. In
each case, about 7000 particles, equally spaced in the z-plane, are seeded within
one wavelength with a mean initial position of x = λ/2 (x = 0 for the case of
skew-symmetrical channel), vacating the region within 0.05/λ from the vortex centre.
We employ an infinite number of vortices with maximum amplitude of motion
contained within the trough. Particles seeded are tracked for 10 cycles, and the
standard deviation σ of their positions along the axis of the channel is calculated as
a function of time. From figure 23(a), it can be seen that σ increases monotonically
with time for all three cases (e.g. Sobey 1985). In the wavy-wall problem (particles
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Figure 23. Mixing efficiencies measured in terms of standard deviation σ . (a) Comparing
wavy wall (——), symmetrical wavy channel (– – – – –) and skew-symmetrical wavy channel
(–·–·–·–). (b) Effect of diffusion on passive mixing in skew-symmetrical wavy channel: ν = 0
(——), ν = 0.001 (– – – – –), ν = 0.005 (–·–·–·–) .

seeded up to y = 0.24), we note that particles steadily drift further away from the
wall and thus have diminishing interactions with the vortices trapped in the wall
corrugations. Therefore, the wavy-wall configuration is not desirable for long-term or
long-range mixing. The skew-symmetrical wavy channel outperforms the symmetrical
wavy channel with significantly higher values of σ . In addition, the latter does not
allow lateral mixing across the invariant centreline shown in figure 24(a), whereas the
former permits cross-centreline mixing as illustrated in figure 25(a). In conclusion, the
skew-symmetrical wavy channel is the most efficient in passive mixing (e.g. Nishimura
& Matsune 1996).

7.2. Diffusion by random walk

The particle tracking scheme presented above models only the advection of passive
tracers. Chorin (1973) proposed that advective and diffusive phenomena could be
treated separately, where the latter may be simulated using a stochastic technique
involving random particle displacements analogous to Brownian motion. It is assumed
that at the end of every advective step, each particle undergoes a random walk in
two orthogonal directions. The standard deviation of these random walks must be
compatible with the analytical Gaussian solution of pure diffusion, and therefore the
fluctuating random velocity components of a particle are written as

ur = r1

√
2ν/∆t, vr = r2

√
2ν/∆t, (7.1a, b)

where the subscript r indicates random component; ν and ∆t are the diffusion
coefficient and time step respectively; and r1 and r2 are independent normally
distributed random numbers, each with zero mean and unit standard deviation
(e.g. Borthwick & Barber 1992).

Owing to the fact that the distribution of the random number generated will
inherently be distorted by the mapping functions, the random walks are performed
based on length of displacements in the physical domain instead of the computational
domain. Equations (7.1) are thus rewritten as

∆ξr = ur∆t, ∆ηr = vr∆t, (7.3)
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Figure 24. Particle positions at t/T = 10 for symmetrical wavy channel (η versus ξ ): (a)
ν = 0; (b) ν = 0.001. (Initial particle positions are equally spaced in the z-plane within one
wavelength with mean position x = λ/2; × and � represent initial particle position above and
below the centreline respectively.)
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Figure 25. Particle positions at t/T = 10 for skew-symmetrical wavy channel (η versus ξ ):
(a) ν = 0; (b) ν = 0.001. (Initial particle positions are equally spaced in the z-plane within one
wavelength with mean position x = 0; × and � represent initial particle position above and
below the centreline respectively).
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where ur and vr are the random velocity components in the ζ -plane. It follows that
the crux of the method lies in the inverse mapping of the particle position at the
end of each random walk in order to proceed with the Lagrangian tracking. As there
are no closed-form solutions of the inverse mapping functions for all three cases,
namely the wavy wall and the symmetrical and skew-symmetrical wavy channels, the
corresponding particle position in the z-plane is iteratively solved on the basis of the
orientation and magnitude of displacement which are kept conformal by the mapping
functions. In order to maintain the validity of the statistical distribution, all particles
are solved using the same time step, which is chosen to be small (∆t = 0.001) in order
to minimize the non-physical tendency of particles in the numerical solutions to cross
the flow boundary or penetrate the vortex core. The few particles which do start to
cross the boundary are halted at the boundary itself, whereas particles which enter
the vacated vortex core are returned to their initial positions and subjected to a fresh
attempt.

Figures 24(b) and 25(b) show the particle positions at the end of the 10th cycle
for the symmetrical and skew-symmetrical wavy channels for ν = 0.001. Increasing
scatter with the magnitude of diffusion coefficient is evident when ν = 0.005 is used
(not shown). For the symmetrical wavy-wall problem, cross-centreline mixing is now
possible, resulting in qualitative mixing which resembles the effect produced by the
skew-symmetrical wavy channel with zero diffusivity (figure 25a). Introduction of
diffusion by random walks causes the skew-symmetrical wavy channel to produce
even better particle scatter, notably in the lateral direction. Figure 23(b) shows the
standard deviation as a function of time when different diffusion coefficients are used
for the skew-symmetrical wavy channel. The same is observed for the symmetrical
wavy channel. The decrease of σ with increasing diffusion is counter-intuitive but well
founded. In figures 12(b) and 13(b), we have shown that under the influence of an
infinite number of vortical stirrers, a line of particles spreads further longitudinally,
with particles at the rear predominantly engaged in hydrodynamic resonance and
particles at the front mainly undisturbed. Because of diffusion, particles at the rear
are now more likely to escape from the vortex core and mixing zone to the free-flow
region, rejoining the bulk flow. On the other hand, particles at the front that are
sufficiently distant from the vortex field at most instants may now be entrained owing
to diffusivity or even penetrate the vortex core and become permanently trapped.
These particles then lag behind, reducing the number of particles in the leading front.
The combined effect thus gives an overall reduction of σ which quantifies longitudinal
particle dispersion.

8. Active mixing
The preceding investigation focuses on passive tracers which are able to follow

the physical flow behaviour and be transported with negligible influence on the flow
regime regardless of the concentration. The tracers are inert and demonstrate no
growth or decay in their course of motion. In practical conditions, however, passive
tracers of distinct characteristics may exhibit chemical or biological interactions with
the fluid and/or other constituents. In particular, autocatalytic reactions are those in
which at least one of the products is a reactant and of which the rate equations are
fundamentally nonlinear.

The simple autocatalytic reaction A + B −→ 2B in a chaotic flow regime was first
investigated by Metcalfe & Ottino (1994) for flow in a bounded eccentric cylinder.
Their work captured the growth and propagation of patterns in active mixing driven
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primarily by the highly interwoven nature of the manifold tangle. Toroczkai et al.
(1998) and Károlyi et al. (1999) extended the study to open chaotic flow around a
cylinder and showed that the fractal unstable manifold in the wake of the cylinder acts
as a catalyst for the process. A fractal object is highly ramified such that its surface
area (or perimeter in the case of two-dimensional object) is resolution dependent.
As a result, reactions occur only at the fractal boundary and mixing is imperfect.
Budyansky, Uleysky & Prants (2004) studied a simple two-dimensional open flow
composed of a fixed point vortex and a background periodic current and showed that
the tracer dynamics is typically chaotic in the mixing region. The boundary of the
vortex core acts as a dynamical trap for advected particles, resulting in a fractal-like
scattering function which depends on the trapping time. Indeed, the mixing problem
considered herein is an open-flow problem characterized by transient chaos and
permanent fractality (Károlyi & Tél 2007).

We now extend our study to active mixing where the non-escaping vortex core acts
as the source of the reacting seed. The effect of the vortex dynamics on the overall
mixing mechanism and efficiency will be investigated using the surface reaction theory
of Károlyi et al. (1999).

8.1. Numerical implementation of autocatalytic reaction

We consider the autocatalytic reaction A+B −→ 2B in a wavy channel with an infinite
number of vortices, where a single-vortex core is selected to carry a finite number
of seed particles B which are incapable of escaping. The incoming background flow
constitutes A particles, which will react and be transformed to B particles if they
come within a prescribed reaction distance ε0 from the existing B particles in the
flow field. These B particles are produced in the mixing zone and are thus capable
of being ejected from the vortex and advected downstream, reacting with other A

particles they come in contact with.
One way to numerically simulate the above processes is to adopt a uniformly

gridded domain with each cell being occupied by either type A or type B particles,
regardless of the actual number of particles present. If both species are present, then
B always survives. At a prescribed reaction rate, the neighbouring cells of a cell
occupied with B particles will be converted if they are not already B-type cell (e.g.
Toroczkai et al. 1998; Péntek et al. 1999; Liang, Taylor & Borthwick 2007). After
the reaction stage, particles occupy the positions of their respective cell centres and
resume passive advection until the next reaction sets in. The grid size must thus be
less than or equal to the reaction distance ε0. In the present model, the uniform grid
is constructed in the physical ζ -domain, and hence the corresponding grid points
in the computational z-domain must first be established via inverse mapping. Both
passive and active processes are computed entirely in the z-plane, and mapping to
the ζ -plane is performed for graphical purposes only.

An initial patch of 400 B-type particles is seeded inside the vortex core. A grid
size of ε0 = 0.05/λ is adopted, equivalent to 0.36 % of the wall wavelength. The
observation window covers five wavelengths, with the reacting vortex core in the first.
The vortex motion always commences from its lower middle position (corresponding
to the position at t/T = 0.5, in § 6) for all reaction rates. For reaction rates shorter
than the periodicity T of the vortex motion, an integer number of reactions per cycle
is considered; for reaction rates longer than T , the reaction rate is taken to be an
integer multiple of T . This ensures that behaviour which repeats at the period of the
vortex motion appears as fixed points, or periodic cycles, on the stroboscopic map
taken at the instant of the reaction (Károlyi et al. 1999).
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Figure 26. Evolved seed patch of reacting B particles in the symmetrical wavy channel at two
reactions per cycle (η versus ξ ; plots show lower half of the channel only): (a)–(d ) correspond
to t/T = 0.5, 2.5, 4.5 and 8.5 respectively, where initial vortex position (t/T = 0) is at its
nearest to the wall.

8.2. Fractal dimensions and reaction theory

Figure 26 shows evolved B particles seeded in the symmetrical wavy channel
considered at two reactions per cycle. Figure 26(a) shows that within the first half
a cycle, species B grows in the vortex core but no particles have yet escaped the
vortex field as it grows (refer § 6.3). At the end of the first cycle, as the vortex
sweeps down the trough at large velocity, a substantial amount of B particles drain
along the wall. These particles are advected into the second trough and subsequently
entrained by the vortex in the neighbouring trough (figure 26b). The second vortex
is eventually infected and acts as another source of the seed particles (figure 26c).
As the process continues, accelerated reaction with background A particles produces
an increasing number of B particles which escape along the unstable manifold. A
quasi-equilibrium state is eventually reached after four cycles where the number of
B particles produced, nB , is balanced by the number that have escaped from the
observation window (figure 27, inset). However, the vortex in the fifth trough does not
operate as a reaction site, being surrounded by B particles. The above reaction rate is
relatively low, and we note that B particles do not cross the centreline of the channel.

The structure observed in figure 26 clearly resembles the unstable manifold shown
in figure 21. Amongst others, Károlyi et al. (1999) have found that active particles
trace out the unstable manifold but with wider coverage due to the advancing
reaction process. This means that the reactions occur on the surface of the fattened-
up unstable manifold of the chaotic saddle, which has a fractal appearance with
filamental structures. Although the chaos is transient in the mixing region, the fractal
pattern traced out by the reactions is permanent and can be quantified with a fractal
dimension D0 (Péntek et al. 1999). Furthermore, this fractal dimension is the same as
that of the unstable manifold in the reaction-free flow.

The continuous reaction equation for an autocatalytic reaction in an open flow
proposed by Károlyi et al. (1999) is

ȦB = −kAB + ge(t)(2 − D0)vrA
−β
B , (8.1)
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Figure 27. Power scaling law of the steady-state reactant front area: +, symmetrical channel;
×, skew-symmetrical channel. The inset shows typical temporal growth of the population of
B particles inside the observation window.

where AB is the area covered by reacting B-particles within the observation window; k

is the escape rate of the particles; ge(t) is a geometrical factor containing information
on the unstable manifold; vr is the reaction front velocity (= 2ε0/t); and t is the lag
time between reactions. The positive exponent β is defined as (D0 − 1)/(2 − D0), with
1 < D0 < 2. The first and second terms on the right-hand side of (8.1) describe the
escape and the production respectively of B particles. If the reaction takes place on
a simple non-fractal line, i.e. D0 = 1, then β = 0 and (8.1) reduces to classical surface
reaction (Landau & Lifshitz 1987). In chaotic open flow, the boundary of the unstable
manifold is fractal, where D0 > 1. Consequently, the reaction described by (8.1) is
dissipative and possesses an attractor. Solving for the steady solution (ȦB = 0), we
have a trivial unstable equilibrium if A∗

B = 0 or

A∗
B = [gevr (2 − D0)/k](2−D0). (8.2)

Equation (8.2) describes the steady-state condition achieved when newborn and
escaping particles are balanced. The fractal dimension D0 can be easily determined
because the slope of the log–log plot of A∗

B versus vr is (2 − D0) (figure 27).
We consider reaction rates ranging from 1/2 to 30 reactions per cycle for both the

symmetrical and skew-symmetrical wavy channels (figure 27). The area occupied by
B particles is simply given by nBε2

0 . Plotting the same data in figure 27 using normal
scale (not shown), extrapolation gives zero B particles as the reaction front velocity
reduces to zero. There is a linear increase of B particles up to two reactions per
cycle, beyond which the production rate decreases because of competition from the
particle escape rate from the observation window. For a reaction rate �1 per cycle, the
reactions take place at a fixed site, corresponding to the initial position of the vortex
at the middle lowest of the vortex trajectory. Should the reaction site be changed,
different results would be obtained. This corresponds to the zone vr/U < 3.5 × 10−4

in figure 27. Sensitivity checks confirm that the selection of reaction site has negligible
effect on the resulting area occupied for reaction rates �2 per cycle, which constitutes
our region of interest. The fractal dimension D0 in this region is approximately 1.65,
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Figure 28. Evolved seed patch of reacting B particles at 20 reactions per cycle (η versus
ξ ) for the following: symmetrical wavy channel at (a) t/T = 2.5 and (b) t/T = 4.5; (c)
skew-symmetrical wavy channel at t/T = 3.75. The initial vortex positions (t/T = 0) are at
their nearest to the wall.

which implies that the reaction rate is slow on the characteristic scale of chaotic
advection and verifies the singular enhancement of productivity (Toroczkai et al.
1998; Károlyi et al. 1999). It is interesting to note that for reaction rate �10 per cycle,
the symmetrical channel shows a sudden increase of A∗

B and thus an offset in figure 27.
This region of higher reaction rates has a fractal dimension of 1.60 which is slightly
different from the intermediate reaction rate. The augmentation of the area covered
can be attributed to the entrainment of B particles by the vortex at the opposite
wall immediately after the particles cross the converging part of the channel and
are confronted by the swelling separation bubble (figure 28a). The opposite vortex
core gradually becomes infected, and as a consequence, more troughs are completely
filled with B particles when the quasi-equilibrium state is attained (figure 28b). In the
skew-symmetrical channel, despite the fact that B particles regularly visit the opposite
side of the channel, they are not entrained. Figure 28(c) shows that B particles intrude
into the upstream end of the upper trough when the vortices at the lower wall are at
their rightmost positions. At this instant, the upper vortex fields are also located
at the rightmost positions near the downstream end of the troughs. As a result,
particles do not encroach into the upper vortex field. At the next instant, protruding
B particles are drawn back by the lower vortices when the vortices at both upper
and lower walls sweep down the wall (counterclockwise and clockwise respectively),
and the separation bubble contracts. Similarly, when the lower vortices are at their
leftmost positions, B particles intrude the downstream end of the upper trough (not
shown). At the same instant, the upper vortices are also located at their leftmost
positions; i.e. the vortex fields are near the upstream end of the troughs, unable
to entrain B particles at the opposite end. Hence, in the absence of the dynamics
induced by the converging-diverging flow field, the serpentine-type skew-symmetrical
channel maintains a boundary between A and B particles on the upper and lower
walls respectively for reaction rates up to 30 per cycle.

It is interesting to note that the fractal dimension obtained above shows grid
independence when a coarser cell of size 0.1/λ is used. Moreover, the simulations are
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at the limit of weak diffusion, where the reaction range is of the same order as the
diffusion distance for ν = 0.005 (§ 7.2). We note that for two-dimensional hyperbolic
open systems, the fractal dimension can be related to the escape rate k and the
Lyapunov exponent λn via (Tél et al. 2005)

D0 = 2 − k/λn. (8.3)

For a quantitative characterization of the escape rates, the ensemble of particles in
figures 24 and 25 is monitored to determine the fraction n retained within the trough
of their origin as a function of time. In both cases, exponential decay is observed
and can be fitted with the correlation n ∼ exp(−kt), giving k ∼ 0.031 and 0.030 for
the symmetrical and skew-symmetrical channels respectively. Exponential decay of
material from an eddy in a wavy corrugation has been verified experimentally for
a range of flow parameters by Wierschem & Aksel (2004). The Lyapunov exponent,
which gives the rate of stretching of nearby particles, is measured by starting a test
particle close to that of a reference trajectory with an initial distance of δ = 10−5/λ.
Whenever the distance of the test particle from the reference trajectory is larger than
a threshold value of 10δ, it is shifted back to a distance δ from the reference trajectory
along the line which connects them. The number of times, ns , this is performed thus
provides an estimate of the Lyapunov exponent, λn, along the reference trajectory
(Neufeld & Tél 1998). We note that the spatial distribution of λn is highly varied, being
positive in the mixing region but vanishing in the regular region within the vortex core
(Babiano et al. 1994; Neufeld & Tél 1998). Using a large number of randomly selected
reference trajectories (not taking into consideration those which are permanently
trapped by the vortex cores), the largest values of λn for the symmetrical and
skew-symmetrical channels are obtained as 0.084 and 0.085 respectively. Using (8.3),
the fractal dimensions of the symmetrical and skew-symmetrical channels are thus
calculated as 1.63 and 1.65, which are in good agreement with the values obtained
from figure 27. We may thus conclude that hyperbolicity plays a crucial role in the
dynamics of the present problem outside the stable region, where almost all initial
conditions lead to orbits that eventually escape the mixing region at exponential rate.
The vortex core, nonetheless, gives rise to non-hyperbolicity and is characterized by
space-filling fractality (D0 = 2) (e.g. Lau, Finn & Ott 1991; Motter, Lai & Grebogi
2003; de Moura & Grebogi 2004).

9. Conclusions
We have considered open flow in channels where the mixing process is induced

primarily by unsteady motion of point vortices located in the trough region of
the wavy wall. Assuming two-dimensional irrotational, incompressible flow, the
equations of motion for the vortices and the particles have been derived. Their
instantaneous positions have been tracked using the Lagrangian technique and have
been conformally mapped to the physical domain. Perturbation analysis indicates
that the frequency of vortex motion is weakly dependent on the wall amplitude but
that a characteristic Strouhal number ω/UK ∼ 0.25 occurs for a wide range of
input parameters. The analytical and numerical vortex paths agree well for small
perturbation. It has been found that the vortex trajectory is governed mainly by its
image, with little effect arising from the presence of neighbouring vortices along the
wavy wall or channel.

Particle trajectories and snapshots have revealed the stretching and folding processes
and increasing scattering that characterize chaotic motion. Particles seeded within the
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separation bubble have been found to escape from the trough (hence the vortex),
primarily during the first oscillation cycle. A major fraction of particles retained is
made up of those seeded at close proximity to the singular point, a stable region
which constitutes a ‘core’ surrounding and shielding the vortex singularity. Significant
mass exchange takes place between particles inside and outside the separation bubble,
forming a chaotic-sea-of-mixing region which evolves in size as the vortex moves. The
dynamics are in good qualitative agreement with previously reported solutions of the
unsteady Navier–Stokes equations for a wavy channel with oscillatory unidirectional
flow.

Statistical evaluation of the particle positions has shown that the skew-symmetrical
wavy channel is more efficient in passive mixing than a symmetrical wavy channel.
Incorporating the effect of diffusion via gridless random walk increases lateral particle
dispersion significantly despite a marked reduction in the standard deviation of the
longitudinal particle positions.

Using the non-escaping vortex core as a source of reacting particles, we have
considered autocatalytic reaction in the wavy channel and verified that the unstable
manifold acts as an effective catalyst for the process. Fractal enhancement of
productivity (D0 ≈ 1.65) has been identified. The symmetrical wavy channel shows
augmentation of area covered by B particles at high reaction rates due to infection
of the vortices at the opposite wall. The fractal dimensions obtained correlate well
to the escape rates and the Lyapunov exponents if only the hyperbolic dynamics is
considered. Non-hyperbolicity is present but is confined to the stable region within
the vortex core.

The simplicity of the present model and its qualitative accuracy make it attractive
for the study of a wide range of vortex-induced transport and mixing problems in
channels with wavy or zigzag configurations.
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